
Experiments
❖ The relative order of accuracy between 

models on hard subcorpus converges quickly
❖ Both UL and HN are shown to be effective

❖ We improves passage retrieval by 2-4% in 
top-20 accuracy and phrase retrieval by 
2-3% in top-1 accuracy from DensePhrases
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❖ Components to build a dense retrieval system
➢ Training a dual encoder
➢ Selecting the best model with validation
➢ Constructing an index for efficient search
are loosely connected each other
e.g., model training does not directly optimize 
the retrieval performance from the full corpus

❖ Goal: minimize the training-inference gap 
of dense retrievers to achieve better retrieval 
performance (focusing on phrase retrieval)

Motivation
❖ To expedite modeling innovation correctly, we 

measure retrieval accuracy on an index from 
a smaller subset of the full corpus (C)

❖ C0: gold passages from the development set 
(minimal set ensuring to contain answers) 

❖ Random Subcorpus (Rr): C0 + random 
passages, |Rr| = r|C|

❖ Hard Subcorpus (Hk): C0 + all context 
passages from top-k retrieval results using a 
pre-trained dense retriever

Efficient Validation

Optimized Training of DensePhrases
❖ Unified loss (UL)
➢ We should find an answer phrase among all 

possible candidates at once in test time
➢ Put all negatives together into contrastive 

targets with different λ coefficients
➢ Use all tokens in context passages

■ # of negatives: in-passage (L-1), in-batch 
(B-1 → B*L-1), pre-batch (B*T → B*T*L)

❖ Hard negatives (HN)
➢ Fix mistakes from the first round model
➢ Mining: extract model-based hard 

negatives from top-k retrieval results for 
questions in the training set

➢ Training: fine-tune a dual encoder by 
appending sampled hard negatives as 
negative targets for each training step

♢: trained on each dataset independently, ♠: trained on multiple datasets, ♡: trained on Natural Questions datasets

Comparison of (a) original and (b) proposed procedure 
of DensePhrases training (top) and validation (bottom)

Validation results with different size of random (r ∈ {0, 1/100, 1/10}) and hard 
(k ∈ {1, 2, 4, 8, 10, 16, 32, 64}) subcorpora, ♭: before query-side fine-tuning


