Bridging the Training-Inference Gap

for Dense Phrase Retrieval
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Motivation

% Components to build a dense retrieval system

> Training a dual encoder

> Selecting the best model with validation

> Constructing an index for efficient search
are loosely connected each other
e.g., model training does not directly optimize
the retrieval performance from the full corpus
Goal: minimize the training-inference gap
of dense retrievers to achieve better retrieval
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Comparison of (a) original and (b) proposed procedure
of DensePhrases training (top) and validation (bottom)
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To expedite modeling innovation correctly, we

measure retrieval accuracy on an index from

a smaller subset of the full corpus (C)

< C,: gold passages from the development set
(minimal set ensuring to contain answers)

< Random Subcorpus (R ): C, + random
passages, |R | = r|C|

< Hard Subcorpus (H ): C, + all context

passages from top-k retrieval results using a

pre-trained dense retriever
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Optimized Training of DensePhrases

 Unified loss (UL)

> We should find an answer phrase among all
possible candidates at once in test time

> Put all negatives together into contrastive
targets with different A coefficients

> Use all tokens in context passages
m # of negatives: in-passage (L-1), in-batch

(B-1 — B*L-1), pre-batch (B*T — B*T*L)

“* Hard negatives (HN)

> Fix mistakes from the first round model

> Mining: extract model-based hard
negatives from top-k retrieval results for
guestions Iin the training set

> Training: fine-tune a dual encoder by
appending sampled hard negatives as
negative targets for each training step

Experiments

Validation results with different size of random (r € {0, 1/100, 1/10}) and hard
(k € {1, 2,4, 8,10, 16, 32, 64}) subcorpora, b : before query-side fine-tuning
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“ The relative order of accuracy between

models on hard subcorpus converges quickly
 Both UL and HN are shown to be effective

“ We improves passage retrieval by 2-4% in
top-20 accuracy and phrase retrieval by
2-3% In top-1 accuracy from DensePhrases
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DensePhrases®-UL 567 759 838 652 237 650 76.6 827 702  39.0 vensethpmes ~LLALN SR 14
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¢: trained on each dataset independently, «&: trained on multiple datasets, ©: trained on Natural Questions datasets
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